Re-design of Rhodobacter sphaeroides dimethyl sulfoxide reductase. Enhancement of adenosine N1-oxide reductase activity.

نویسندگان

  • J C Hilton
  • C A Temple
  • K V Rajagopalan
چکیده

The periplasmic DMSO reductase from Rhodobacter sphaeroides f. sp. denitrificans has been expressed in Escherichia coli BL21(DE3) cells in its mature form and with the R. sphaeroides or E. coli N-terminal signal sequence. Whereas the R. sphaeroides signal sequence prevents formation of active enzyme, addition of a 6x His-tag at the N terminus of the mature peptide maximizes production of active enzyme and allows for affinity purification. The recombinant protein contains 1.7-1.9 guanines and greater than 0.7 molybdenum atoms per molecule and has a DMSO reductase activity of 3.4-3.7 units/nmol molybdenum, compared with 3.7 units/nmol molybdenum for enzyme purified from R. sphaeroides. The recombinant enzyme differs from the native enzyme in its color and spectrum but is indistinguishable from the native protein after redox cycling with reduced methyl viologen and Me2SO. Substitution of Cys for the molybdenum-ligating Ser-147 produced a protein with DMSO reductase activity of 1.4-1.5 units/nmol molybdenum. The mutant protein differs from wild type in its color and absorption spectrum in both the oxidized and reduced states. This substitution leads to losses of 61-99% of activity toward five substrates, but the adenosine N1-oxide reductase activity increases by over 400%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-dependent gene regulation in Rhodobacter sphaeroides 2.4.1(T): effects on dimethyl sulfoxide reductase (dor) gene expression.

The ability of Rhodobacter sphaeroides 2.4.1(T) to respire anaerobically with the alternative electron acceptor dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO) is manifested by the molybdoenzyme DMSO reductase, which is encoded by genes of the dor locus. Previously, we have demonstrated that dor expression is regulated in response to lowered oxygen tensions and the presence of DMSO o...

متن کامل

Molybdenum requirement for translocation of dimethyl sulfoxide reductase to the periplasmic space in a photodenitrifier, Rhodobacter sphaeroides f. sp. denitrificans.

Translocation of dimethyl sulfoxide (DMSO) reductase to the periplasmic space was studied in vivo with a photodenitrifier, Rhodobacter sphaeroides f. sp. denitrificans, using immunoblotting analysis and radioactive labeling. A polypeptide with an apparent molecular mass about 2,000 Da higher than that of DMSO reductase accumulated during induction of the reductase with DMSO. An uncoupler, carbo...

متن کامل

Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme.

Dimethyl sulphoxide reductase was purified from the photosynthetic bacterium Rhodobacter capsulatus. The enzyme is composed of a single polypeptide of Mr 82,000 and contains a pterin-type molybdenum cofactor as the only detectable prosthetic group. The oxidized molybdenum cofactor of dimethyl sulphoxide reductase is a weak chromophore and exhibits broad absorption bands in the u.v.-visible-abso...

متن کامل

Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans.

Absorption and EPR spectroscopic properties of purified dimethyl sulfoxide (Me2SO) reductase from Rhodobacter sphaeroides f. sp. denitrificans have been examined. The absence of prosthetic groups other than the molybdenum center in the enzyme has made it possible to study its absorption properties. The enzyme displays multiple absorbance peaks in both the oxidized and the dithionite-reduced for...

متن کامل

Cascade regulation of dimethyl sulfoxide reductase (dor) gene expression in the facultative phototroph Rhodobacter sphaeroides 2.4.1T.

Under anaerobic-dark growth conditions, in the presence of the alternative electron acceptor dimethyl sulfoxide (DMSO) or trimethylamine N-oxide (TMAO), Rhodobacter sphaeroides 2.4.1(T) respires anaerobically using the molybdoenzyme DMSO reductase (DMSOR). Genes encoding DMSOR and associated proteins are encoded by genes of the dor locus. Previously, we demonstrated that the expression of DMSOR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 13  شماره 

صفحات  -

تاریخ انتشار 1999